The rate-limiting step in the folding of a large ribozyme without kinetic traps.
نویسندگان
چکیده
A fundamental question in RNA folding is the nature of the rate-limiting step. Folding of large RNAs often is trapped by the need to undo misfolded structures, which precludes the study of the other, potentially more interesting aspects in the rate-limiting step, such as conformational search, metal ion binding, and the role of productive intermediates. The catalytic domain of the Bacillus subtilis RNase P RNA folds without a kinetic trap, thereby providing an ideal system to elucidate these steps. We analyzed the folding kinetics by using fluorescence and absorbance spectroscopies, catalytic activity, and synchrotron small-angle x-ray scattering. Folding begins with the rapid formation of early intermediates wherein the majority of conformational search occurs, followed by the slower formation of subsequent intermediates. Before the rate-limiting step, more than 98% of the total structure has formed. The rate-limiting step is a small-scale structural rearrangement involving prebound metal ions.
منابع مشابه
Folding of a large ribozyme during transcription and the effect of the elongation factor NusA.
We compared in vitro transcription-initiated folding of the ribozyme from Bacillus subtilis RNase P to refolding from the full-length, denatured state by monitoring the appearance of its catalytic activity. At 37 degrees C, Mg(2+)-initiated refolding of the wild type and a circularly permutate ribozyme takes minutes and is limited by a kinetic trap. Transcription by T7 RNA polymerase alters the...
متن کاملSignificant kinetic solvent isotope effects in folding of the catalytic RNA from the hepatitis delta virus.
The exchange of deuterium for hydrogen in water often produces solvent kinetic isotope effects (KSIEs) on the rate constants associated with enzyme reactions, including those catalyzed by RNA. Recently, KSIEs have been used to show that proton transfer occurs in the rate-limiting step of cleavage by the hepatitis delta virus (HDV) ribozyme and other catalytic RNAs. To test the underlying assump...
متن کاملNondenaturing Purification of Co-Transcriptionally Folded RNA Avoids Common Folding Heterogeneity
Due to the energetic frustration of RNA folding, tertiary structured RNA is typically characterized by a rugged folding free energy landscape where deep kinetic barriers separate numerous misfolded states from one or more native states. While most in vitro studies of RNA rely on (re)folding chemically and/or enzymatically synthesized RNA in its entirety, which frequently leads into kinetic trap...
متن کاملProbing the folding landscape of the Tetrahymena ribozyme: commitment to form the native conformation is late in the folding pathway.
Large, structured RNAs traverse folding landscapes in which intermediates and long-lived misfolded states are common. To obtain a comprehensive description of the folding landscape for a structured RNA, it is necessary to understand the connections between productive folding pathways and pathways to these misfolded states. The Tetrahymena group I ribozyme partitions between folding to the nativ...
متن کاملAn obligate intermediate along the slow folding pathway of a group II intron ribozyme
Most RNA molecules collapse rapidly and reach the native state through a pathway that contains numerous traps and unproductive intermediates. The D135 group II intron ribozyme is unusual in that it can fold slowly and directly to the native state, despite its large size and structural complexity. Here we use hydroxyl radical footprinting and native gel analysis to monitor the timescale of terti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 99 13 شماره
صفحات -
تاریخ انتشار 2002